Termination w.r.t. Q of the following Term Rewriting System could be proven:

Q restricted rewrite system:
The TRS R consists of the following rules:

minus2(x, 0) -> x
minus2(s1(x), s1(y)) -> minus2(x, y)
quot2(0, s1(y)) -> 0
quot2(s1(x), s1(y)) -> s1(quot2(minus2(x, y), s1(y)))
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
minus2(minus2(x, y), z) -> minus2(x, plus2(y, z))
app2(nil, k) -> k
app2(l, nil) -> l
app2(cons2(x, l), k) -> cons2(x, app2(l, k))
sum1(cons2(x, nil)) -> cons2(x, nil)
sum1(cons2(x, cons2(y, l))) -> sum1(cons2(plus2(x, y), l))
sum1(app2(l, cons2(x, cons2(y, k)))) -> sum1(app2(l, sum1(cons2(x, cons2(y, k)))))

Q is empty.


QTRS
  ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

minus2(x, 0) -> x
minus2(s1(x), s1(y)) -> minus2(x, y)
quot2(0, s1(y)) -> 0
quot2(s1(x), s1(y)) -> s1(quot2(minus2(x, y), s1(y)))
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
minus2(minus2(x, y), z) -> minus2(x, plus2(y, z))
app2(nil, k) -> k
app2(l, nil) -> l
app2(cons2(x, l), k) -> cons2(x, app2(l, k))
sum1(cons2(x, nil)) -> cons2(x, nil)
sum1(cons2(x, cons2(y, l))) -> sum1(cons2(plus2(x, y), l))
sum1(app2(l, cons2(x, cons2(y, k)))) -> sum1(app2(l, sum1(cons2(x, cons2(y, k)))))

Q is empty.

Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

QUOT2(s1(x), s1(y)) -> QUOT2(minus2(x, y), s1(y))
PLUS2(s1(x), y) -> PLUS2(x, y)
SUM1(app2(l, cons2(x, cons2(y, k)))) -> APP2(l, sum1(cons2(x, cons2(y, k))))
SUM1(cons2(x, cons2(y, l))) -> PLUS2(x, y)
MINUS2(minus2(x, y), z) -> PLUS2(y, z)
SUM1(cons2(x, cons2(y, l))) -> SUM1(cons2(plus2(x, y), l))
SUM1(app2(l, cons2(x, cons2(y, k)))) -> SUM1(cons2(x, cons2(y, k)))
MINUS2(minus2(x, y), z) -> MINUS2(x, plus2(y, z))
MINUS2(s1(x), s1(y)) -> MINUS2(x, y)
QUOT2(s1(x), s1(y)) -> MINUS2(x, y)
SUM1(app2(l, cons2(x, cons2(y, k)))) -> SUM1(app2(l, sum1(cons2(x, cons2(y, k)))))
APP2(cons2(x, l), k) -> APP2(l, k)

The TRS R consists of the following rules:

minus2(x, 0) -> x
minus2(s1(x), s1(y)) -> minus2(x, y)
quot2(0, s1(y)) -> 0
quot2(s1(x), s1(y)) -> s1(quot2(minus2(x, y), s1(y)))
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
minus2(minus2(x, y), z) -> minus2(x, plus2(y, z))
app2(nil, k) -> k
app2(l, nil) -> l
app2(cons2(x, l), k) -> cons2(x, app2(l, k))
sum1(cons2(x, nil)) -> cons2(x, nil)
sum1(cons2(x, cons2(y, l))) -> sum1(cons2(plus2(x, y), l))
sum1(app2(l, cons2(x, cons2(y, k)))) -> sum1(app2(l, sum1(cons2(x, cons2(y, k)))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ DependencyPairsProof
QDP
      ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

QUOT2(s1(x), s1(y)) -> QUOT2(minus2(x, y), s1(y))
PLUS2(s1(x), y) -> PLUS2(x, y)
SUM1(app2(l, cons2(x, cons2(y, k)))) -> APP2(l, sum1(cons2(x, cons2(y, k))))
SUM1(cons2(x, cons2(y, l))) -> PLUS2(x, y)
MINUS2(minus2(x, y), z) -> PLUS2(y, z)
SUM1(cons2(x, cons2(y, l))) -> SUM1(cons2(plus2(x, y), l))
SUM1(app2(l, cons2(x, cons2(y, k)))) -> SUM1(cons2(x, cons2(y, k)))
MINUS2(minus2(x, y), z) -> MINUS2(x, plus2(y, z))
MINUS2(s1(x), s1(y)) -> MINUS2(x, y)
QUOT2(s1(x), s1(y)) -> MINUS2(x, y)
SUM1(app2(l, cons2(x, cons2(y, k)))) -> SUM1(app2(l, sum1(cons2(x, cons2(y, k)))))
APP2(cons2(x, l), k) -> APP2(l, k)

The TRS R consists of the following rules:

minus2(x, 0) -> x
minus2(s1(x), s1(y)) -> minus2(x, y)
quot2(0, s1(y)) -> 0
quot2(s1(x), s1(y)) -> s1(quot2(minus2(x, y), s1(y)))
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
minus2(minus2(x, y), z) -> minus2(x, plus2(y, z))
app2(nil, k) -> k
app2(l, nil) -> l
app2(cons2(x, l), k) -> cons2(x, app2(l, k))
sum1(cons2(x, nil)) -> cons2(x, nil)
sum1(cons2(x, cons2(y, l))) -> sum1(cons2(plus2(x, y), l))
sum1(app2(l, cons2(x, cons2(y, k)))) -> sum1(app2(l, sum1(cons2(x, cons2(y, k)))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 6 SCCs with 5 less nodes.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

APP2(cons2(x, l), k) -> APP2(l, k)

The TRS R consists of the following rules:

minus2(x, 0) -> x
minus2(s1(x), s1(y)) -> minus2(x, y)
quot2(0, s1(y)) -> 0
quot2(s1(x), s1(y)) -> s1(quot2(minus2(x, y), s1(y)))
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
minus2(minus2(x, y), z) -> minus2(x, plus2(y, z))
app2(nil, k) -> k
app2(l, nil) -> l
app2(cons2(x, l), k) -> cons2(x, app2(l, k))
sum1(cons2(x, nil)) -> cons2(x, nil)
sum1(cons2(x, cons2(y, l))) -> sum1(cons2(plus2(x, y), l))
sum1(app2(l, cons2(x, cons2(y, k)))) -> sum1(app2(l, sum1(cons2(x, cons2(y, k)))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


APP2(cons2(x, l), k) -> APP2(l, k)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [21]:

POL(APP2(x1, x2)) = 2·x1 + 2·x1·x2   
POL(cons2(x1, x2)) = 1 + 2·x2   

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

minus2(x, 0) -> x
minus2(s1(x), s1(y)) -> minus2(x, y)
quot2(0, s1(y)) -> 0
quot2(s1(x), s1(y)) -> s1(quot2(minus2(x, y), s1(y)))
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
minus2(minus2(x, y), z) -> minus2(x, plus2(y, z))
app2(nil, k) -> k
app2(l, nil) -> l
app2(cons2(x, l), k) -> cons2(x, app2(l, k))
sum1(cons2(x, nil)) -> cons2(x, nil)
sum1(cons2(x, cons2(y, l))) -> sum1(cons2(plus2(x, y), l))
sum1(app2(l, cons2(x, cons2(y, k)))) -> sum1(app2(l, sum1(cons2(x, cons2(y, k)))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

PLUS2(s1(x), y) -> PLUS2(x, y)

The TRS R consists of the following rules:

minus2(x, 0) -> x
minus2(s1(x), s1(y)) -> minus2(x, y)
quot2(0, s1(y)) -> 0
quot2(s1(x), s1(y)) -> s1(quot2(minus2(x, y), s1(y)))
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
minus2(minus2(x, y), z) -> minus2(x, plus2(y, z))
app2(nil, k) -> k
app2(l, nil) -> l
app2(cons2(x, l), k) -> cons2(x, app2(l, k))
sum1(cons2(x, nil)) -> cons2(x, nil)
sum1(cons2(x, cons2(y, l))) -> sum1(cons2(plus2(x, y), l))
sum1(app2(l, cons2(x, cons2(y, k)))) -> sum1(app2(l, sum1(cons2(x, cons2(y, k)))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


PLUS2(s1(x), y) -> PLUS2(x, y)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [21]:

POL(PLUS2(x1, x2)) = 2·x1 + 2·x1·x2   
POL(s1(x1)) = 1 + 2·x1   

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

minus2(x, 0) -> x
minus2(s1(x), s1(y)) -> minus2(x, y)
quot2(0, s1(y)) -> 0
quot2(s1(x), s1(y)) -> s1(quot2(minus2(x, y), s1(y)))
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
minus2(minus2(x, y), z) -> minus2(x, plus2(y, z))
app2(nil, k) -> k
app2(l, nil) -> l
app2(cons2(x, l), k) -> cons2(x, app2(l, k))
sum1(cons2(x, nil)) -> cons2(x, nil)
sum1(cons2(x, cons2(y, l))) -> sum1(cons2(plus2(x, y), l))
sum1(app2(l, cons2(x, cons2(y, k)))) -> sum1(app2(l, sum1(cons2(x, cons2(y, k)))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

SUM1(cons2(x, cons2(y, l))) -> SUM1(cons2(plus2(x, y), l))

The TRS R consists of the following rules:

minus2(x, 0) -> x
minus2(s1(x), s1(y)) -> minus2(x, y)
quot2(0, s1(y)) -> 0
quot2(s1(x), s1(y)) -> s1(quot2(minus2(x, y), s1(y)))
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
minus2(minus2(x, y), z) -> minus2(x, plus2(y, z))
app2(nil, k) -> k
app2(l, nil) -> l
app2(cons2(x, l), k) -> cons2(x, app2(l, k))
sum1(cons2(x, nil)) -> cons2(x, nil)
sum1(cons2(x, cons2(y, l))) -> sum1(cons2(plus2(x, y), l))
sum1(app2(l, cons2(x, cons2(y, k)))) -> sum1(app2(l, sum1(cons2(x, cons2(y, k)))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


SUM1(cons2(x, cons2(y, l))) -> SUM1(cons2(plus2(x, y), l))
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [21]:

POL(0) = 0   
POL(SUM1(x1)) = 2·x1   
POL(cons2(x1, x2)) = 1 + x2   
POL(plus2(x1, x2)) = 0   
POL(s1(x1)) = 0   

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

minus2(x, 0) -> x
minus2(s1(x), s1(y)) -> minus2(x, y)
quot2(0, s1(y)) -> 0
quot2(s1(x), s1(y)) -> s1(quot2(minus2(x, y), s1(y)))
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
minus2(minus2(x, y), z) -> minus2(x, plus2(y, z))
app2(nil, k) -> k
app2(l, nil) -> l
app2(cons2(x, l), k) -> cons2(x, app2(l, k))
sum1(cons2(x, nil)) -> cons2(x, nil)
sum1(cons2(x, cons2(y, l))) -> sum1(cons2(plus2(x, y), l))
sum1(app2(l, cons2(x, cons2(y, k)))) -> sum1(app2(l, sum1(cons2(x, cons2(y, k)))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

SUM1(app2(l, cons2(x, cons2(y, k)))) -> SUM1(app2(l, sum1(cons2(x, cons2(y, k)))))

The TRS R consists of the following rules:

minus2(x, 0) -> x
minus2(s1(x), s1(y)) -> minus2(x, y)
quot2(0, s1(y)) -> 0
quot2(s1(x), s1(y)) -> s1(quot2(minus2(x, y), s1(y)))
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
minus2(minus2(x, y), z) -> minus2(x, plus2(y, z))
app2(nil, k) -> k
app2(l, nil) -> l
app2(cons2(x, l), k) -> cons2(x, app2(l, k))
sum1(cons2(x, nil)) -> cons2(x, nil)
sum1(cons2(x, cons2(y, l))) -> sum1(cons2(plus2(x, y), l))
sum1(app2(l, cons2(x, cons2(y, k)))) -> sum1(app2(l, sum1(cons2(x, cons2(y, k)))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


SUM1(app2(l, cons2(x, cons2(y, k)))) -> SUM1(app2(l, sum1(cons2(x, cons2(y, k)))))
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [21]:

POL(0) = 0   
POL(SUM1(x1)) = x1   
POL(app2(x1, x2)) = 1 + 3·x1 + 2·x2   
POL(cons2(x1, x2)) = 2 + x2   
POL(nil) = 0   
POL(plus2(x1, x2)) = 1 + x1 + 3·x1·x2 + 2·x2   
POL(s1(x1)) = 3   
POL(sum1(x1)) = 3   

The following usable rules [14] were oriented:

sum1(cons2(x, nil)) -> cons2(x, nil)
app2(cons2(x, l), k) -> cons2(x, app2(l, k))
app2(nil, k) -> k
app2(l, nil) -> l
sum1(cons2(x, cons2(y, l))) -> sum1(cons2(plus2(x, y), l))



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

minus2(x, 0) -> x
minus2(s1(x), s1(y)) -> minus2(x, y)
quot2(0, s1(y)) -> 0
quot2(s1(x), s1(y)) -> s1(quot2(minus2(x, y), s1(y)))
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
minus2(minus2(x, y), z) -> minus2(x, plus2(y, z))
app2(nil, k) -> k
app2(l, nil) -> l
app2(cons2(x, l), k) -> cons2(x, app2(l, k))
sum1(cons2(x, nil)) -> cons2(x, nil)
sum1(cons2(x, cons2(y, l))) -> sum1(cons2(plus2(x, y), l))
sum1(app2(l, cons2(x, cons2(y, k)))) -> sum1(app2(l, sum1(cons2(x, cons2(y, k)))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof
          ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

MINUS2(minus2(x, y), z) -> MINUS2(x, plus2(y, z))
MINUS2(s1(x), s1(y)) -> MINUS2(x, y)

The TRS R consists of the following rules:

minus2(x, 0) -> x
minus2(s1(x), s1(y)) -> minus2(x, y)
quot2(0, s1(y)) -> 0
quot2(s1(x), s1(y)) -> s1(quot2(minus2(x, y), s1(y)))
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
minus2(minus2(x, y), z) -> minus2(x, plus2(y, z))
app2(nil, k) -> k
app2(l, nil) -> l
app2(cons2(x, l), k) -> cons2(x, app2(l, k))
sum1(cons2(x, nil)) -> cons2(x, nil)
sum1(cons2(x, cons2(y, l))) -> sum1(cons2(plus2(x, y), l))
sum1(app2(l, cons2(x, cons2(y, k)))) -> sum1(app2(l, sum1(cons2(x, cons2(y, k)))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


MINUS2(minus2(x, y), z) -> MINUS2(x, plus2(y, z))
MINUS2(s1(x), s1(y)) -> MINUS2(x, y)
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [21]:

POL(0) = 0   
POL(MINUS2(x1, x2)) = x1   
POL(minus2(x1, x2)) = 3 + 3·x1   
POL(plus2(x1, x2)) = 0   
POL(s1(x1)) = 3 + x1   

The following usable rules [14] were oriented: none



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof
          ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

minus2(x, 0) -> x
minus2(s1(x), s1(y)) -> minus2(x, y)
quot2(0, s1(y)) -> 0
quot2(s1(x), s1(y)) -> s1(quot2(minus2(x, y), s1(y)))
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
minus2(minus2(x, y), z) -> minus2(x, plus2(y, z))
app2(nil, k) -> k
app2(l, nil) -> l
app2(cons2(x, l), k) -> cons2(x, app2(l, k))
sum1(cons2(x, nil)) -> cons2(x, nil)
sum1(cons2(x, cons2(y, l))) -> sum1(cons2(plus2(x, y), l))
sum1(app2(l, cons2(x, cons2(y, k)))) -> sum1(app2(l, sum1(cons2(x, cons2(y, k)))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
QDP
            ↳ QDPOrderProof

Q DP problem:
The TRS P consists of the following rules:

QUOT2(s1(x), s1(y)) -> QUOT2(minus2(x, y), s1(y))

The TRS R consists of the following rules:

minus2(x, 0) -> x
minus2(s1(x), s1(y)) -> minus2(x, y)
quot2(0, s1(y)) -> 0
quot2(s1(x), s1(y)) -> s1(quot2(minus2(x, y), s1(y)))
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
minus2(minus2(x, y), z) -> minus2(x, plus2(y, z))
app2(nil, k) -> k
app2(l, nil) -> l
app2(cons2(x, l), k) -> cons2(x, app2(l, k))
sum1(cons2(x, nil)) -> cons2(x, nil)
sum1(cons2(x, cons2(y, l))) -> sum1(cons2(plus2(x, y), l))
sum1(app2(l, cons2(x, cons2(y, k)))) -> sum1(app2(l, sum1(cons2(x, cons2(y, k)))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be oriented strictly and are deleted.


QUOT2(s1(x), s1(y)) -> QUOT2(minus2(x, y), s1(y))
The remaining pairs can at least be oriented weakly.
none
Used ordering: Polynomial interpretation [21]:

POL(0) = 0   
POL(QUOT2(x1, x2)) = x1·x2   
POL(minus2(x1, x2)) = 1 + x1   
POL(plus2(x1, x2)) = 0   
POL(s1(x1)) = 2 + 2·x1 + 3·x12   

The following usable rules [14] were oriented:

minus2(minus2(x, y), z) -> minus2(x, plus2(y, z))
minus2(s1(x), s1(y)) -> minus2(x, y)
minus2(x, 0) -> x



↳ QTRS
  ↳ DependencyPairsProof
    ↳ QDP
      ↳ DependencyGraphProof
        ↳ AND
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
          ↳ QDP
            ↳ QDPOrderProof
QDP
                ↳ PisEmptyProof

Q DP problem:
P is empty.
The TRS R consists of the following rules:

minus2(x, 0) -> x
minus2(s1(x), s1(y)) -> minus2(x, y)
quot2(0, s1(y)) -> 0
quot2(s1(x), s1(y)) -> s1(quot2(minus2(x, y), s1(y)))
plus2(0, y) -> y
plus2(s1(x), y) -> s1(plus2(x, y))
minus2(minus2(x, y), z) -> minus2(x, plus2(y, z))
app2(nil, k) -> k
app2(l, nil) -> l
app2(cons2(x, l), k) -> cons2(x, app2(l, k))
sum1(cons2(x, nil)) -> cons2(x, nil)
sum1(cons2(x, cons2(y, l))) -> sum1(cons2(plus2(x, y), l))
sum1(app2(l, cons2(x, cons2(y, k)))) -> sum1(app2(l, sum1(cons2(x, cons2(y, k)))))

Q is empty.
We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.